

Distortion and residual stress simulation of complex AM parts

P. Michaleris*, E. Denlinger*, G. Adams**, \& E. Pierson**

2023 TechConnect World Innovation Conference
*PanOptimization
**Lockheed Martin

LOCKHEED MARTIN

America Makes 1113: ONR Quality Made Program

- "The program objective is to define a framework that couples modeling tools, in-situ process measurements, real-time closed-loop control, and machine learning to meet performance requirements for AM parts"
- Laser hot-wire directed energy deposition (DED) of Ti-6Al-4V
- Impeller experiences cracking at the interface of the vanes and the build plate

PanOptimization offers software licensing and consulting

 services for AM process modeling- Primarily focused on FEA simulation/optimization of large and/or complex AM parts
- Part-scale simulation approach is applicable to both LPBF and DED processes
- Company founded in 2022

© 2023 Velo3D, Inc. All Rights Reserved. This figure is used with Velo3D permission for marketing purposes only.

PanX mesher dramatically reduces mesh size and consumes minimal RAM

Uniform voxel mesh:

Nodes $=\sim 6 B$

Solve time = impossible

Traditional adaptive mesh:
Nodes $=\sim 60 \mathrm{M}$

Solve time $=$ impractical/impossible

PanX mesher:

Nodes $=3.4 \mathrm{M}$

Solve time $=1.5 \mathrm{hrs}$ (48 cores)

When combined, the PanX architecture and mesher allow for extremely complex geometries to be solved layer-by-layer

- Highly parallelized and vectorized code improves computational speed
- Hybrid OMP-MPI architecture allows for running efficiently on anything from a laptop to a cluster
- 76 M equations
- $9 h r$ runtime (48 cores)

© 2023 Velo3D, Inc. All Rights Reserved. This figure is used with Velo3D permission for marketing purposes only.

The model is setup to run four different deposition cases for the impeller

Case 1: Baseline

Case 2: Fillet

Case 3: Unclamped

Case 4: Heat-treated

ب1
$\uparrow \uparrow \uparrow$

Case 1 FEA mesh:
\# nodes: 1.67M

The model is used to calculate the mechanical response of each case

Case 1 (Baseline)

Distortion magnitude (10x)

- Runtime: 30 mins 48 sec (48 core cpu)
- Memory: 19.9 GB

High residual stress builds up at the interface of the vanes and the build plate

Case 1 (Baseline)

Mises stress (MPa)

Case 2 (Fillet) adds material to the vanes to form a fillet at the interface of the vanes and the build plate

Case 2 (Fillet)

Distortion magnitude (10x)

- Runtime: 40 mins 17 sec (48 core cpu)
- Memory: 23.0 GB

Before clamp release

$$
\mathrm{u}=1.0 \mathrm{~mm}
$$

After clamp release

The maximum residual stress at the interface is reduced compared with the baseline

Case 2 (Fillet)

Mises stress (MPa)

Case 3 (Unclampled) removes the fixturing from the simulation

Case 3 (Unclamped)

Distortion magnitude (10x)

- Runtime: 35 mins (48 core cpu)
- Memory: 19.3 GB

Case 3 (Unclamped) maximum Mises stress at the interface is close to the baseline

Case 4 (Heat-treated) adds a heat-treatment step after 7 layers of deposition

Case 4 (Heat-treated)

Distortion magnitude (10x)

- Runtime: 35 mins 3 s (48 core cpu)
- Memory: 19.7 GB

Heat-treatment substantially reduces residual stress at the interface

Differences in residual stress evolution over time are seen in each case

A J-Integral based approach should give a better indication of cracking risk

More experimental data will be needed to assess the suitability of fracture prediction criteria

Conclusions

- Adding fillets or performing a heat-treatment was successful in reducing the maximum Mises stress at the interface of the vane and the build plate
- Max Mises stress is not be the best indicator of crack propagation, most likely a J-integral based approach will be the solution

Contact us: panoptimization.com

Questions?

